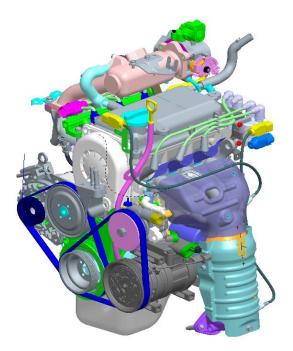

Engine

Copyright by Hyundai Motor Company. All rights reserved.

Drive your way[™]

PA - ENGINE


Application

Engine		Т/М		Area			
Model	Volume [cc]	Performance [PS/kgf.m]	M/T	A/T	India	Europe	General
ε-1.1	1,086	64/9.9	M5EF2	A4CF0	•	•	•
U-1.1	1,120	75/15.5	M5CF1	-	-	•	-

•Epsilon 1.1L engine is already used for Santro(Atoz)

- Kappa 1.2L engine, which is newly developed, will be applied in 2008.
- Common Rail U-1.1L engine is only for EU market with manual transaxle.
- Common Rail U-1.1L engine has 3 cylinders

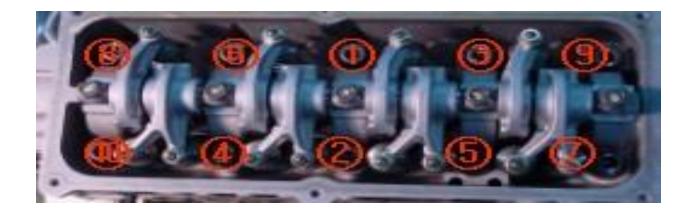
Epsilon Engine

Copyright by Hyundai Motor Company. All rights reserved.

Drive your way[™]

PA - ENGINE

4


Epsilon engine

Engine	ε-1.1
Displacement (cc)	1086
Max. Power (PS / RPM)	64 / 5,500
Max. Torque (kgf⋅m / RPM)	9.8 / 2,800
Feature	 SOHC In-line 4 cylinders (12 valves) One Timing Belt DLI BOSCH PCM Return-less fuel system ROSA type ISA

PA - ENGINE

Tightening Torque

-When cold : 60 ~ 70 Nm

-When hot : 70 ~ 75 Nm

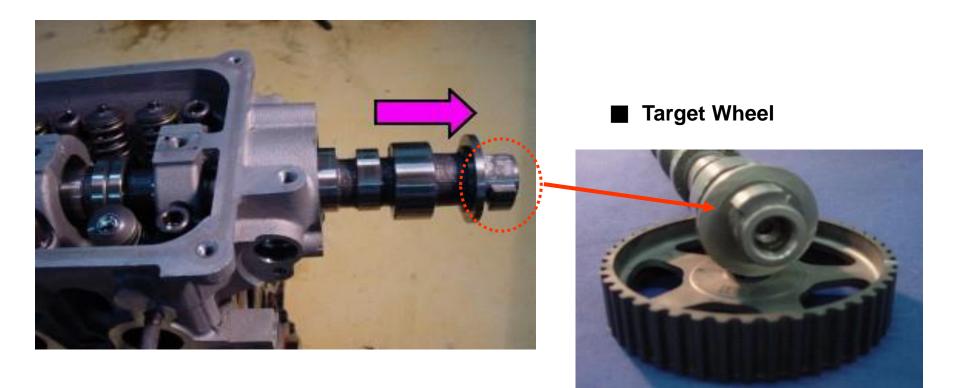
Traditional torque method is used. To keep proper installation, mentioned torque should be tightened with right procedure.

PA - ENGINE

Rocker Arm

Adjustment Specification

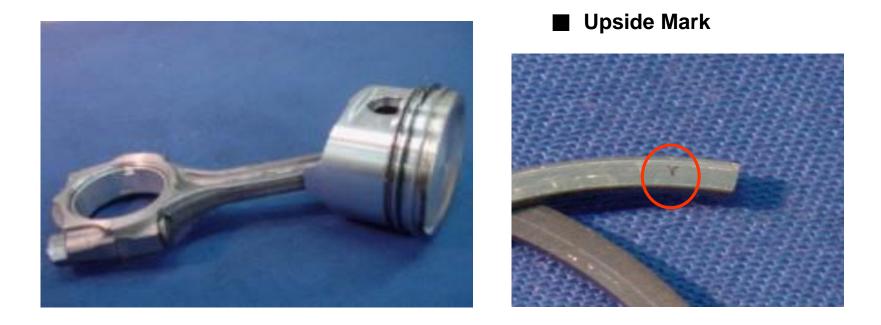
	Intake	Exhaust
Standard Clearance (Intake, mm)	0.2	0.25
Standard Clearance (Exhaust, mm)	0.1	0.17



TDC

PA - ENGINE

Camshaft



Be sure to remove camshaft from front side to rear side(fly wheel side).

PA - ENGINE

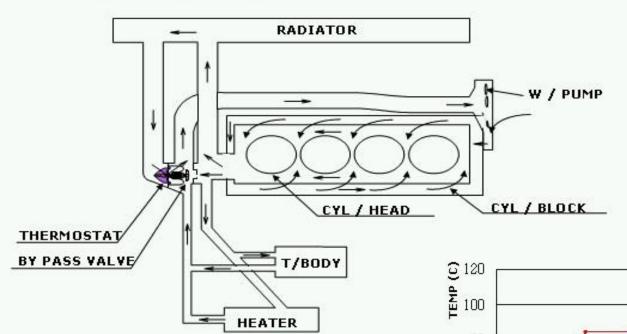
Piston

Top ring and second ring have unique up side mark. Be sure to keep this mark when you assemble piston ring to piston.

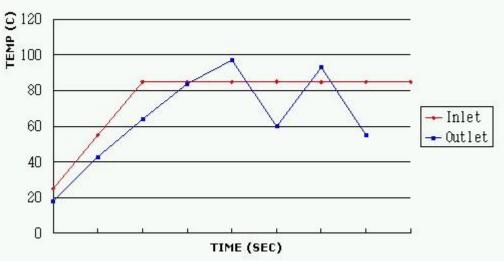
To assemble piston pin to piston <u>SST(09324-33001)</u> is needed.

PA - ENGINE

Timing



PA - ENGINE


Inlet Cooling System

INLET CONTROL TYPE DIAGRAM

Thermostat opening temperature is 82°C. When it fully opens, it becomes 95°C.

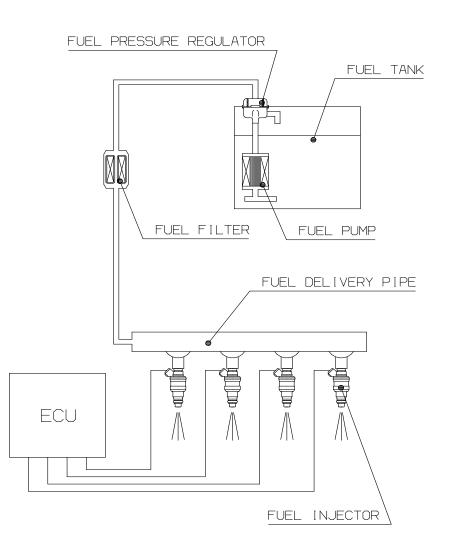
HYUNDRI

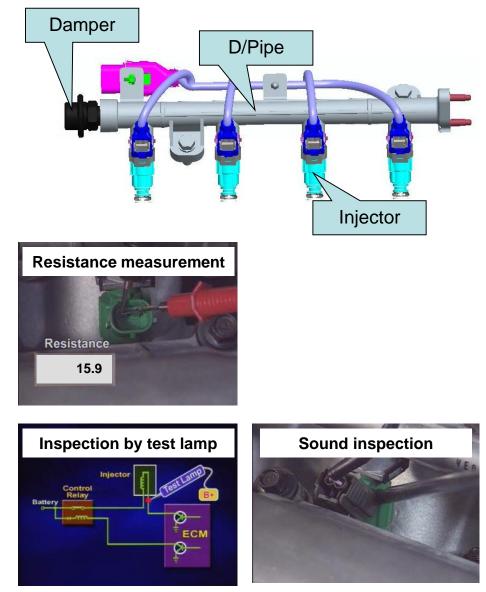
PA - ENGINE

www.cargeek.ir

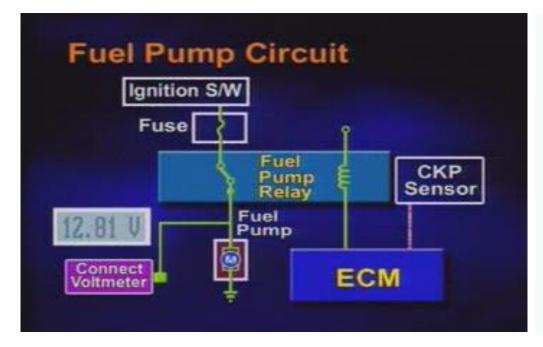
11

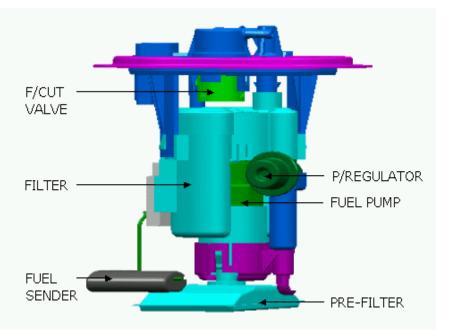
Oil Pump and Oil Pressure Switch


Oil pressure switch is screwed near engine oil filter. When the oil pressure goes down less than 0.5kg/cm², oil pressure warning lamp turns on.


At engine idle condition after warm up, normally oil pressure reaches 147kpa(1.5kg/cm²)

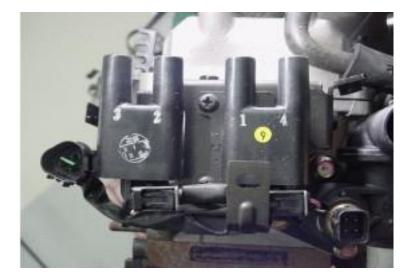
Return Less Fuel System (RLFS)

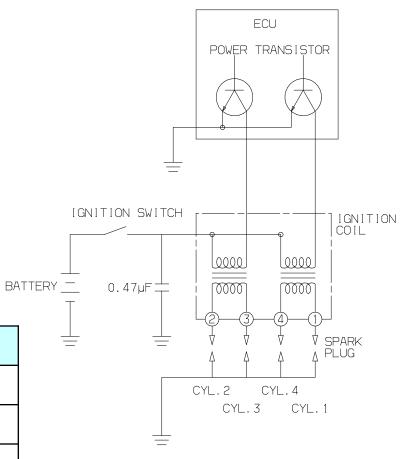




PA - ENGINE

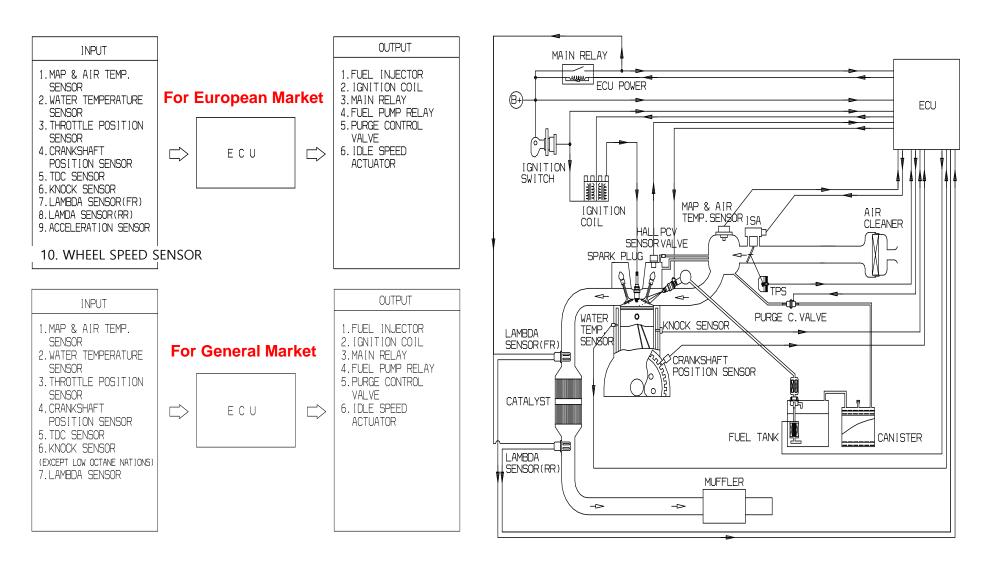
Fuel Pump



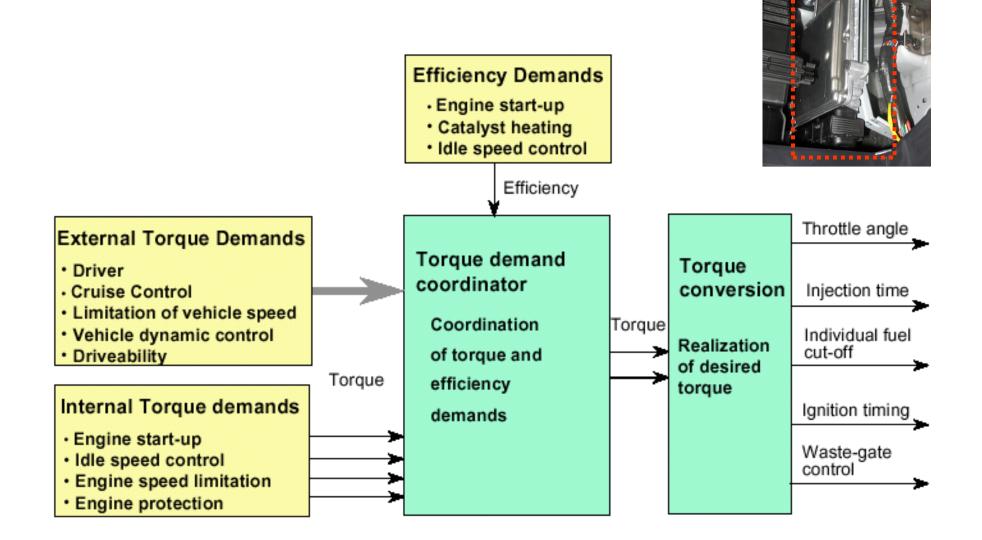


PA - ENGINE

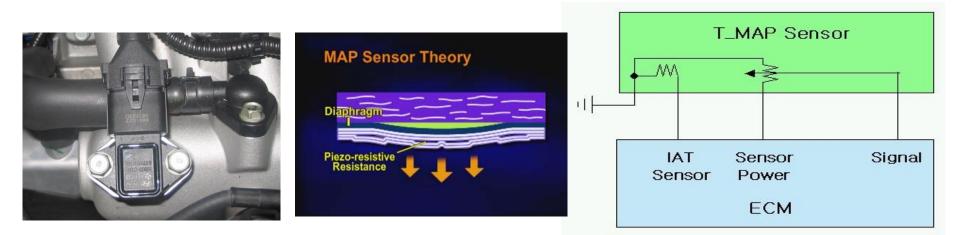
Ignition Coil and Spark Plug



ltem		Specification	
Туре		Mold Dual Coil	
Ignition Coil	Pasistanas	Primary	0.82Ω±10%
	Resistance	Secondary	15.5KΩ±10%

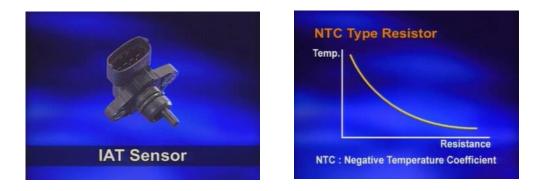

PA - ENGINE

Input & Output


Bosch M7.9.8

PA - ENGINE

T_MAP Sensor

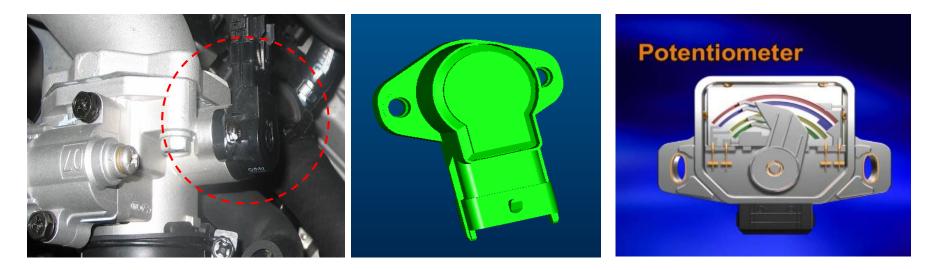

Intake air temperature sensor is integrated with T_MAP sensor. It produces $0.3 \sim 4.8$ voltage range as signal.

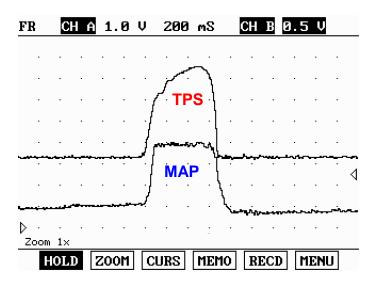
At ignition on condition, it shows $3.8 \sim 4.2 \text{ V}$ which is converted to atmospheric pressure.

PA - ENGINE

IAT Sensor

When IAT fault is detected, current data shows -40°C an a default value.

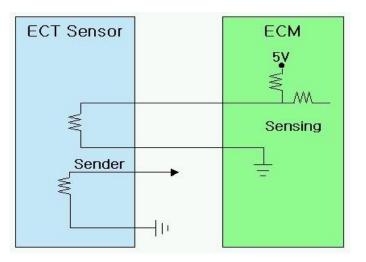

Checking Condition	Temperature	Current Data	Remarks	
	0°C	4.0 ~ 4.4V		
	20°C	3.3 ~ 3.7V		
IG On	40°C	2.5 ~ 2.9V	NTC type	
	80°C	1.0 ~ 1.4V		


	1.4 SIMU-SCAN					
×	MAP SENSOR	34.4 kPa				
×	MAP SENSOR(VOLT)	2.4 V 🗖				
×	INT.AIR TEMP.SNSR	39.0°C				
×	ENGINE SPEED	850 rpm				
	SIMULATION OF VOLTAGE					
	2.26 V					
	(CH B ONLY)					
	METR SIML -	+ - FIX				

PA - ENGINE

TP Sensor (Lever type)

It's better check TPS waveform with MAP signal's together. Both signals are similar and signal trend has to be compared together.



PA - ENGINE

ECT Sensor

METR SIML

This sensor has 4 terminals. 2 are for ECT sensor. These two terminals are gold coated. Another 2 are for engine temperature indicator in cluster.

1.4 SIMU-	-SCAN			
COOLANT TEMP. SENSO	R 118.5°C			
TARGET IDLE RPM	850 rpm	╴		
A/F CLOSED LOOP	ON			
FAN-LOW SPEED	ON			
SIMULATION OF VOLTAGE				

╋

FIX

Checking Condition	Temperature	Current Data	Resistance (KΩ)
IG On	0°C	4.27±0.3V	5.18 ~ 6.60
	20°C	$3.44 \pm 0.3 V$	2.27 ~ 2.73
	40°C	2.72±0.3V	1.059 ~ 1.281
	80°C	1.25±0.3V	0.298 ~ 0.322

PA - ENGINE

CKP Sensor

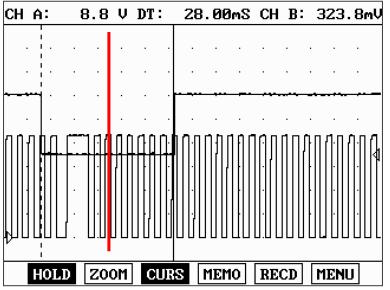
Hall IC type CKP sensor is used. ECM No. 15 is used for sensor signal.

Unlike other general target wheel which is composed with 60 teeth including 2 missing teeth, it has 30 teeth with 2 missing. Except tis tooth unit, all logical processing in ECM is the same

MIN:- :	H A 2.0 84.0mV A	YVE:	4.5 V	MAX:	L.0 V 8.9 V
FREQ: Reference			DUTY:		•Missing Tooth
HOL	D ZOOM	CURS	S MEMO	RECD	MENU

PA - ENGINE

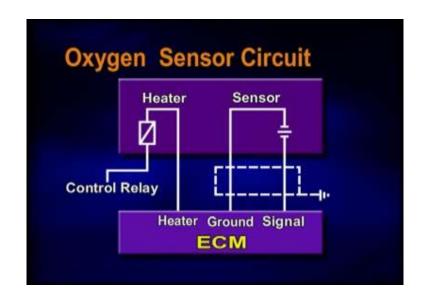
CMP Sensor



CMP sensor is also used from Hall IC.

It distinguishes the cylinder No. by comparing with CKP sensor.

It is located near ignition coil. Camshaft target wheel shape is as shown on the picture.



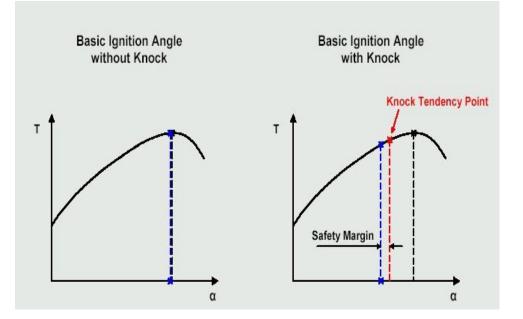
[CMP with CKP Sensor Waveform]

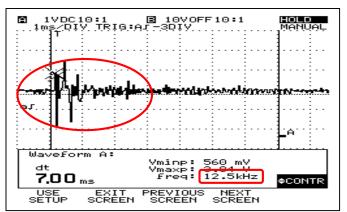
Oxygen Sensor

Zirconia type oxygen sensor is used.

The Zirconia oxygen sensor generates a small voltage depending on the exhaust gas condition.

The normal voltage range is $0.2 \sim 0.8$ volts. 0.2 volts indicates a lean mixture and a voltage of 0.8v indicates a richer mixture.


PA - ENGINE


Knock Sensor

Engine knock control is used to constrain the knocking. Knock sensor detects knocking generated in engine and retard ignition timing.

The knock sensor is installed at between No2. and No.3 cylinder. Like other piezo type sensors, this is made by piezo material. Tightening torque is 20 ± 5 Nm.

Maximum Retard Limit : 12°

• When knocking is detected : Initially retard 3° and increase step by step with 0.75°

PA - ENGINE

www.cargeek.ir

Wheel Speed Sensor

The main role of wheel speed sensor is detecting the rough load condition which allows misfire monitoring inhibition (EOBD:Euro3/Euro4). When the vehicle is running on rough load condition, the CKP angular speed is affected from this road condition. It can signal to ECM as a misfiring. In this case wheel speed sensor detects this kind of rough load condition and order ECM not to consider this situation as a misfiring.

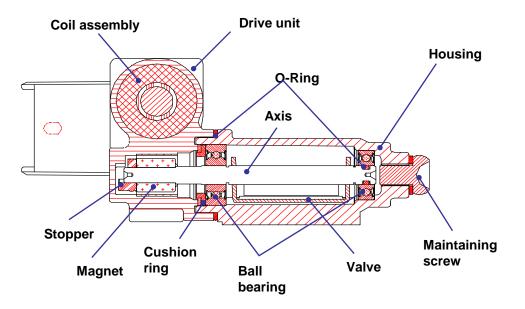
M/ 1	Г	Input Variable	ECU PIN NO.
	With ABS	ABS Signal	K 64
With EOBD	Without ABS	Wheel Speed Sensor	K 79, K 58 (K 64 open)
	With ABS	Vahiela Spaed Sanaar	K 64
Without EOBD	Without ABS	Vehicle Speed Sensor	K 64
AT		Input Variable	PCM PIN NO.
With EOBD	With ABS	ABS Signal	K 20
	Without ABS	Wheel Speed Sensor	A 60, A 45
	With ABS	From TCM	K 20
Without EOBD	Without ABS		K 20

PA - ENGINE

Vehicle Speed Sensor

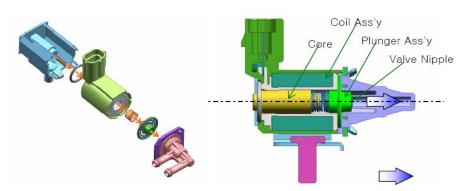
- Vehicle speed sensor is applied on MT only.

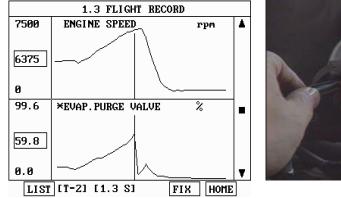
In the case of AT, the vehicle speed sensor is eliminated.
 Instead, ECM receives a corresponding vehicle speed from others.
 (refer to the table below)


T/M	Туре		Vehicle speed from	ECU PIN NO.
	With EOBD	With ABS	ABS unit	K64
MT		Without ABS	Wheel Speed Sensor	K79, K58 (K 64 open)
		With ABS	Vehicle Speed Sensor	K64
	Without EOBD	Without ABS		K04
	With EOBD	With ABS	ABS unit	K20
AT		Without ABS	Wheel Speed Sensor	K60, K45
AI	Without EOBD	With ABS	From TCM	K20(from A40)
		Without ABS		K20(from A49)

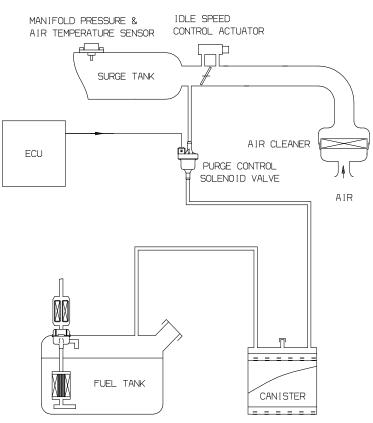
PA - ENGINE

ISA (Idle Speed Actuator)

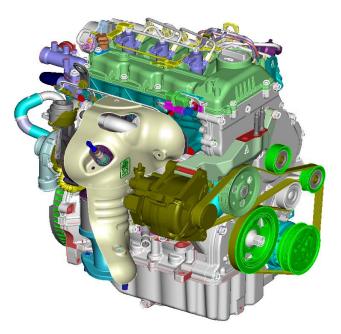

- 1. The ISA controls the proper intake air mass in every engine operating conditions.
- 2. The ECU controls the ISA (double coil of open/close) with frequency of 250Hz.
- 3. The ISA duty is determined by basic map and compensation of ATS, WTS, altitude and A/CON compressed load etc.


PA - ENGINE

PCSV

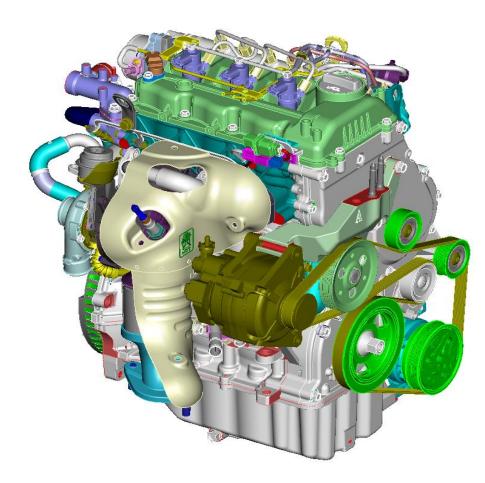


For Evaporative gas monitoring.


PCSV is installed between the canister and the intake manifold, it delivers or shuts the vapor gas to intake manifold, which is stored in the canister. The ECM controls the purge control solenoid valve.

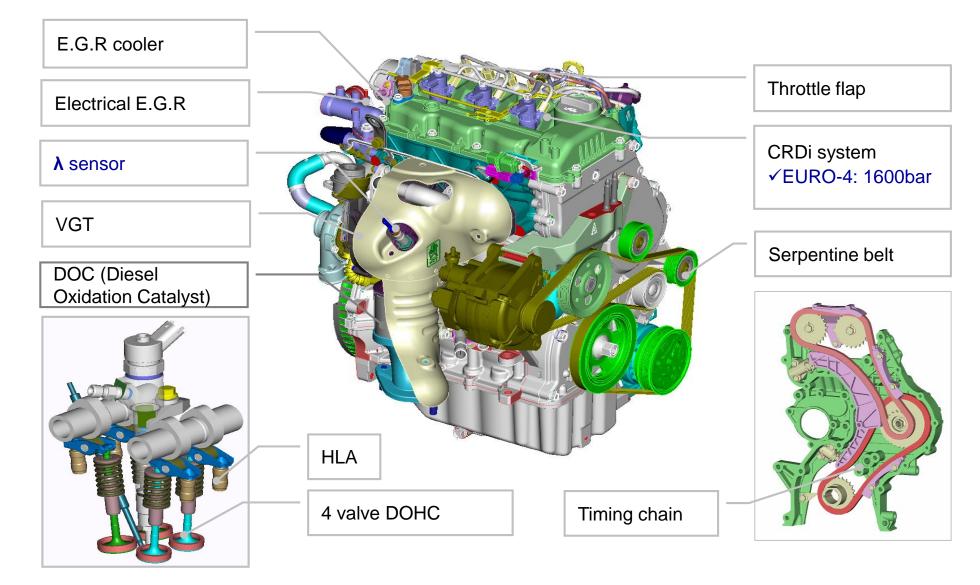
Common Rail U-Engine

Copyright by Hyundai Motor Company. All rights reserved.

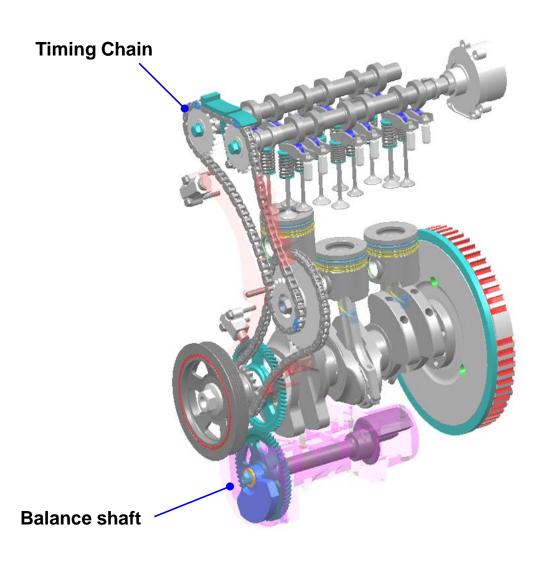


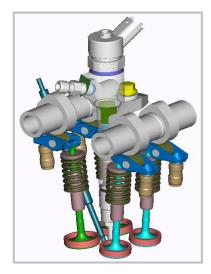
Drive your way[™]

PA - ENGINE


U engine

Engine	U - 1.1 VGT		
Displacement (cc)	1120		
Max. Power (PS / RPM)	75 / 4000		
Max. Torque (kgf∙m / RPM)	15.5 / 2000		
Feature	 VGT Turbo Charger Timing Chain Electrical EGR & EGR cooler Lambda Sensor Throttle flap Serpentine belt Bed Plate In-line 3 cylinders 		

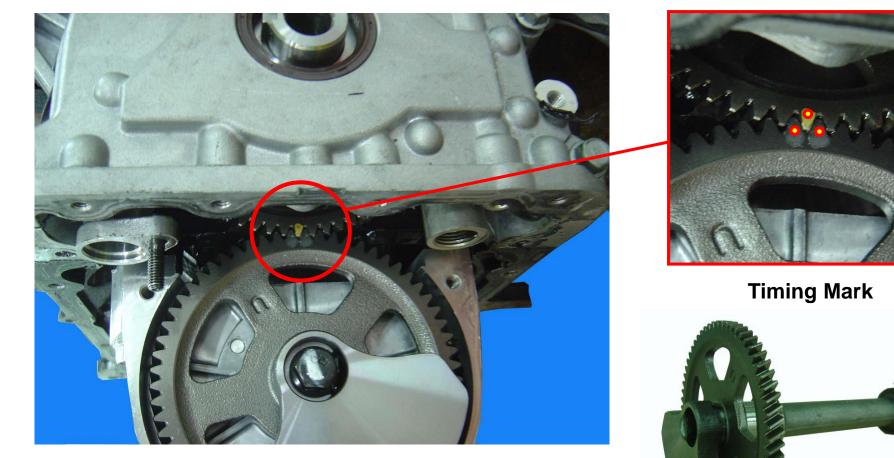

PA - ENGINE



PA - ENGINE

Timing System

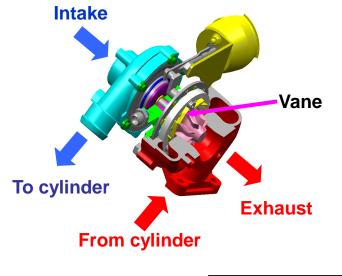
- DOHC 4 Valve
- VALVE operating type:
 - END PIVOT ROLLER SWING ARM



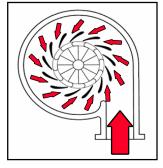
- CAM operating type : 2 Chains
- Hollow camshaft
- Balance shaft is operated by gear
 -> for reducing vibration

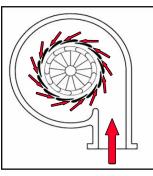
PA - ENGINE

Balance Shaft



Balance Shaft




Intake / Exhaust manifold

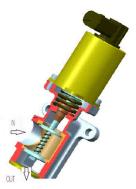
♦ VGT

PA - ENGINE

High Speed

Low Speed

• Electrical EGR Valve

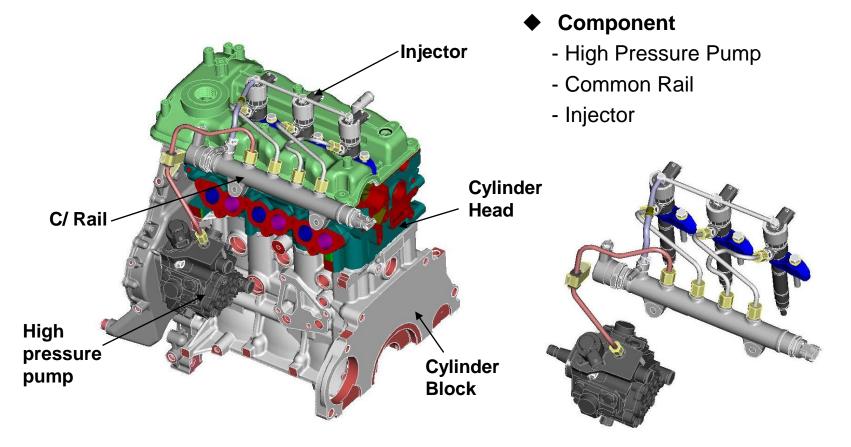

- Valve type : linear solenoid type
- Control voltage : 13.5V (Duty control)
- Coil resistance : 7.3 ~ 8.3 Ω (at 20°C)

EGR COOLER

- Coolant cooling type
- Reduced intake air temperature

and increased intake air

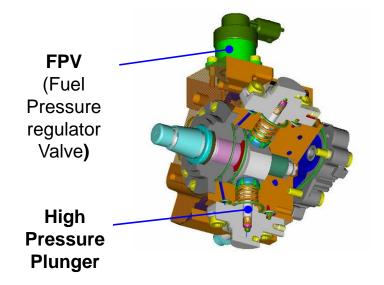
- \rightarrow Reduced NOx and PM
- WCC (Warm-up Catalytic Converter)
- Lambda sensor



E / EGR Valve

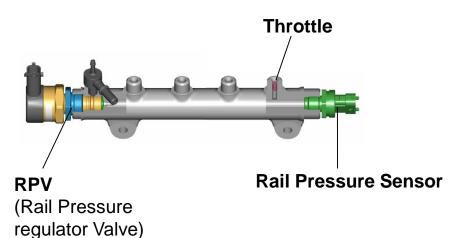
EGR cooler

PA - ENGINE


- Max. Pressure : 1600 bar
- Duel pressure control (2 Governor control) : FPV + RPV
 ※ FRV : Fuel Pressure regulator Valve , RPV : Rail Pressure regulator Valve

HYUNDAI

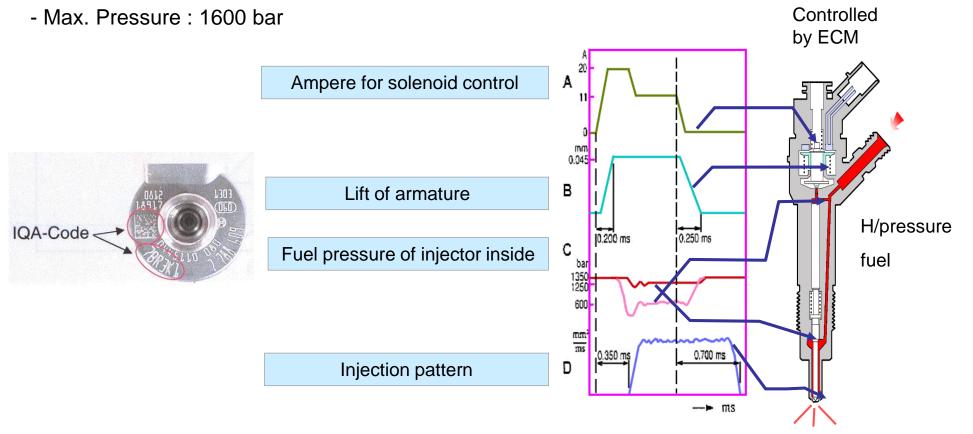
PA - ENGINE


Fuel system – High Pressure Pump / Common Rail

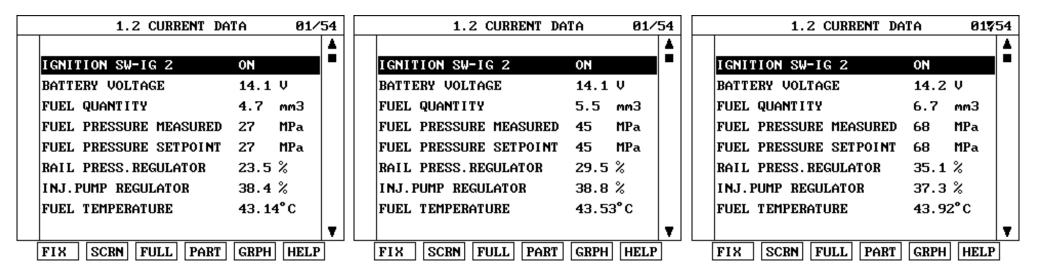
- High Pressure Pump
 - Type : CP1H
 - Max. Pressure : 1600 bar

♦ Common Rail

- Allowed pressure : 1,600 bar
- Rail Pressure Sensor : Max. Measurement : 1,800 bar
- Applied RPV
- Throttle
 - : Reduced fluctuation of fuel pressure to injector



Fuel system – Injector


Injector

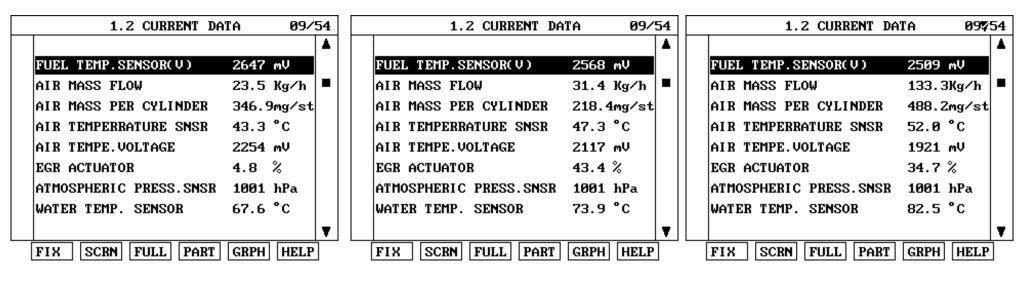
- compensates fuel amount
 - : Applied IQA (Injector Quantity Adjustment) code for compensating fuel amount of each injectors
- Type : CRI2.2

Current Data

Idle condition

1500 rpm

3000 rpm


Conditions

-No Electrical Load

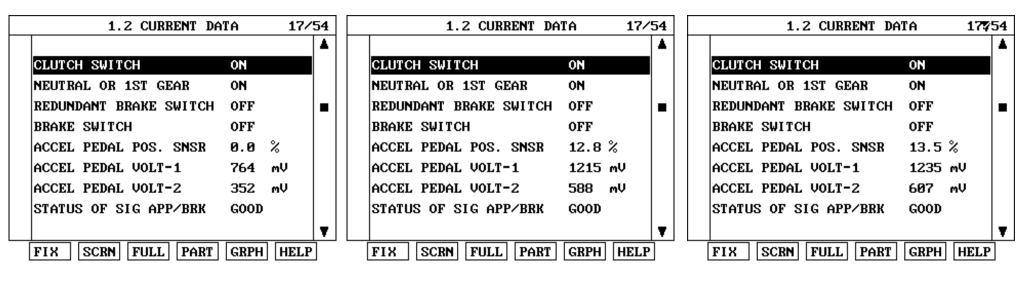
-Neutral (Manual Transaxle)

Current Data

www.cargeek.ir

Idle condition

1500 rpm


3000 rpm

Conditions

-No Electrical Load

-Neutral (Manual Transaxle)

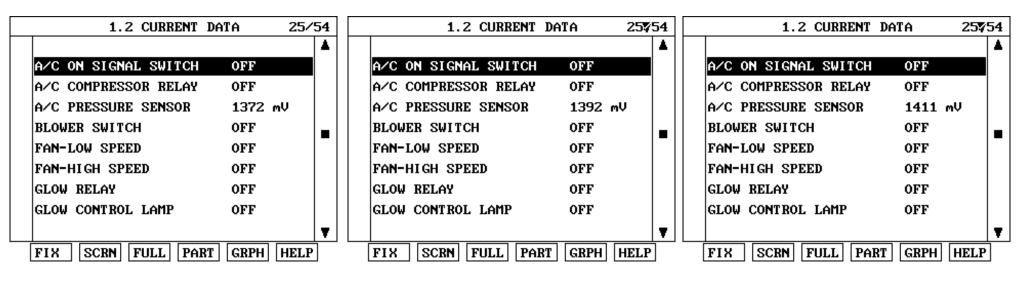
Current Data

www.cargeek.ir

Idle condition

1500 rpm

3000 rpm


Conditions

-No Electrical Load

-Neutral (Manual Transaxle)

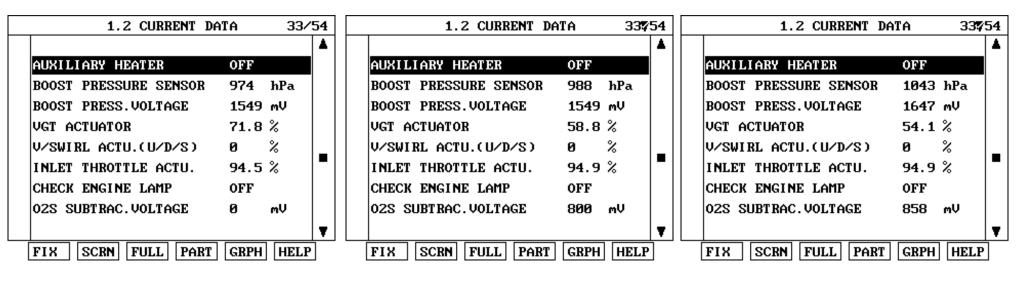
Current Data

www.cargeek.ir

Idle condition

1500 rpm

3000 rpm


Conditions

-No Electrical Load

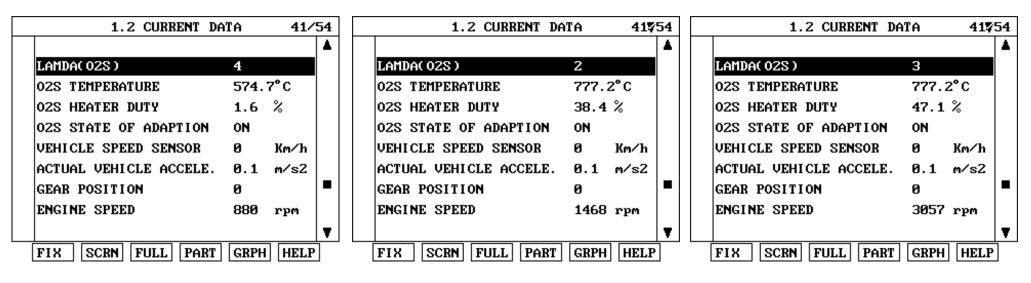
-Neutral (Manual Transaxle)

Current Data

www.cargeek.ir

Idle condition

1500 rpm


3000 rpm

Conditions

-No Electrical Load

-Neutral (Manual Transaxle)

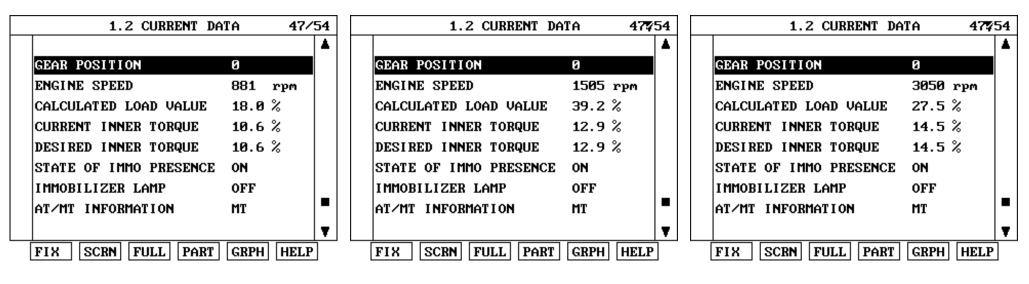
Current Data

www.cargeek.ir

Idle condition

1500 rpm

3000 rpm


Conditions

-No Electrical Load

-Neutral (Manual Transaxle)

Current Data

Idle condition

1500 rpm

3000 rpm

Conditions

-No Electrical Load

-Neutral (Manual Transaxle)

Injector specific data (IQA)

1. HYUNDAI VEHICLE DIAGNOSIS 🔻
MODEL : PA
SYSTEM : ENGINE(DIESEL)
01. DIAGNOSTIC TROUBLE CODES
02. CURRENT DATA
03. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. IDENTIFICATION CHECK
07. ENGINE TEST FUNCTION
08. INJECTOR SPECIFIC DATA
1.8. INJECTOR SPECIFIC DATA
INJECTOR 1
INJECTOR 2
INJECTOR 3
INJECTOR 4
- SELECT THE CYLINDER BY SHIFT+ARROW KEY AND INPUT THE DATA BY FI~F6 KEY AND PRESS [ENTER] KEY.

IJKL

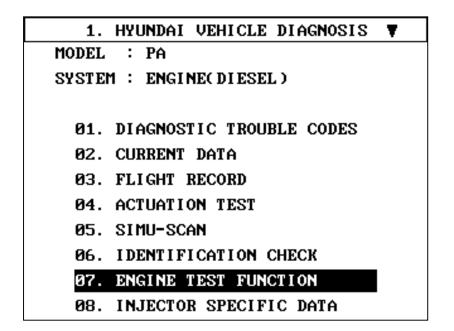
EFGH

ABCD

MNOP

QR-U VW-Z

1. HYUNDAI VEHICLE DIAGNOSIS	Ŧ
MODEL : PA	
SYSTEM : ENGINE(DIESEL)	
01. DIAGNOSTIC TROUBLE CODES	
02. CURRENT DATA	
03. FLIGHT RECORD	
04. ACTUATION TEST	
05. SIMU-SCAN	
06. IDENTIFICATION CHECK	
07. ENGINE TEST FUNCTION	


08. INJECTOR SPECIFIC DATA

1.8. IN	JECTOR SPEC	IFIC DATA
INJECTOR 1	7YH1CID	
INJECTOR 2	8PANCIF	
INJECTOR 3	7YAT4NE	
INJECTOR 4	AAAAAA	
		IT THE DATA BY [ENTER] KEY.

ABCD EFGH IJKL MNOP QR-U VW-Z

Engine Test Function

1.7. COMPRESSION TEST	T
System Information	
_	
ECU H/W:39101-2A810	
ROM ID :B0PA4M2EIP1S	
THIS FUNCTION IS AVAILABE.	
If you ready, Press[ENTER].	

Engine Test Function is consist of 3 tests, which are tested by Hi-scan.

Those are test for mechanical condition of engine, mechanical condition of injectors and electrical compensated by ECM

- Compression test
- Idle speed comparison
- Injection quantity comparison

Engine Test Function – compression test

1.7. COMPRESSION TEST	7.1 COMPRESSION TEST		7.1 COMPRE	SSION TEST	
	This test is used for detecting	CYLI	NDER ENGIN	E SPEEDCRP	M)
01. COMPRESSION TEST	cylinder specific engine speed	#1	# 2	# 3	# 4
02. IDLE SPEED COMPARISON	without injection.	241	245	243	0
03. INJECT. QUANTITY COMPARISON	*Test condition	240	245	243	0
	-Shift level : P or N	240	243	243	0
	-Engine : Stop(IGN. ON)	240	243	242	0
	-Electrical Load : OFF	238	243	242	0
		238	243	242	0
	If you ready, now cranking, and stop	238	243	243	0
	cranking when stop message appear on	Ĥ	NALYZE THE	TEST RESU	LT.
	the screen. Press[ENTER].	ANAL			

	7.1 COMPRE	SSION TEST	
CYLI	NDER ENGIN	E SPEEDCRP	M)
#1	# 2	# 3	# 4
241	245	243	0
240	245	243	0
240	243	243	0
240	243	242	0
238	243	242	0
238	243	242	0
238	243	243	0
Á	NALYZE THE	TEST RESU	LT.
	<< >>>	AVG	HELP

1 CYL. 240 22 CYL. 244 3 CYL. 243
t3 CYL 243
‡4 CYL. 0

7.1 C	OMPRESSION TEST
XThe higher cyl	linder engine speed:
->The low com	pression pressure.
×It can help to	o identify the
mechanical def	fects.
	PREV

Engine Test Function – Idle speed comparison

1.7. COMPRESSION TEST	7.2 IDLE SPEED COMPARISON		7.2	IDLE SPEE	D COMPARISO	N
	This test is used for detecting CYLINDER ENGINE			E SPEEDCRPM	D	
01. COMPRESSION TEST	cylinder specific engine speed with		#1	# 2	# 3	# 4
02. IDLE SPEED COMPARISON	injector energizing.		888	891	890	0
03. INJECT. QUANTITY COMPARISON	(Cylinder balancing function is		884	889	888	0
	deactivated.)		886	888	890	0
	*Test condition		888	889	890	0
	-Compression test : Normal		889	888	888	0
	-Shift level : P or N		888	888	888	0
	-Engine : Idle		887	888	887	0
	-Electrical Load : OFF		A	NALYZE THE	TEST RESUL	Δ Τ.
	IF you ready, Press[ENTER].		ANAL			

7.2	IDLE SPEE	D COMPARIS	ON
CYLI	NDER ENGIN	E SPEEDCRP	M)
#1	# 2	# 3	# 4
888	891	890	0
884	889	888	0
886	888	890	0
888	889	890	0
889	888	888	0
888	888	888	0
887	888	887	0
A	NALYZE THE	TEST RESU	LT.
	<< >>>	AVG	HELP

SPEEDC RPM)650	07	50	85	0	956)	AVG.
#1 CYL.	Ì	Ì	Í				888
#2 CYL.		Ì	ĺ				890
#З СУL.			i				889
#4 CYL.							0
14 UYL.							0

7.2 IDLE SPEED COMPARISON
*The lower engine speed:
->The injector injects less quantity
than other injectors.
*The higher engine speed:
->The injector injects more quantity
than other injectors.
PREV

Engine Test Function – Injection quantity comparison

1.7. COMPRESSION TEST	7.3 INJECT. QUANTITY COMPARISON	7.3 INJECT. QUANTITY COMPARISON							
	This test is used for detecting	ENG.	. SP	EEDC	RPM)	INJE	CTION Q	UANITY	(MM3)
01. COMPRESSION TEST	cylinder specific quantity with	#1	# 2	# З	# 4	#1	# 2	# 3	#4
02. IDLE SPEED COMPARISON	individual energizing of injector.	879	880	880	0	0.1	-0.1	-0.0	-0.0
03. INJECT. QUANTITY COMPARISON	(Cylinder balancing function is	880	880	881	0	0.1	-0.1	-0.0	-0.0
	activated.)	880	879	881	0	0.1	-0.1	-0.0	-0.0
	*Test condition	879	880	880	0	0.1	-0.1	-0.0	-0.0
	-Compression test : Normal	879	880	879	0	0.1	-0.1	-0.0	-0.0
	-Shift level : P or N	879	879	880	0	0.1	-0.1	-0.0	-0.0
	-Engine : Idle	880	880	881	0	0.1	-0.1	-0.0	-0.0
	-Electrical Load : OFF ANALYZE THE TEST RESULT.						SULT.	·	
	IF you ready, Press[ENTER].	A	NAL						

	7.3	INJ	ECT.	QUANT	ІТҮ СО	MPARIS	ON
ENG. SPEED(RPM) INJECTION QUANITY(MM3)							
# 1	# 2	#з	# 4	#1	# 2	# 3	#4
879	880	880	0	0.1	-0.1	-0.0	-0.0
880	880	881	0	0.1	-0.1	-0.0	-0.0
880	879	881	0	0.1	-0.1	-0.0	-0.0
879	880	880	0	0.1	-0.1	-0.0	-0.0
879	880	879	0	0.1	-0.1	-0.0	-0.0
879	879	880	0	0.1	-0.1	-0.0	-0.0
880	880	881	0	0.1	-0.1	-0.0	-0.0
ANALYZE THE TEST RESULT.							
<< >> AVG HELP							

CYLIN	DER	ENG	INE	SPEEI	C RPM)
SPEED(RPM)650		75	750 850		950	AVG.
#1 CYL.						878
# 2 CYL.						878
#3 CYL.	Ī	ĺ				879
#4 CYL.						0
QUANT . (MM3)	-4	-2	0	2	2	AVG.
#1 CYL.						0.08
#2 CYL.						-0.05
#3 CYL.						-0.03
#4 CYL.						-0.00
				F	PREV	HELP

7.3 INJECT. QUANTITY COMPARISON
*The positive correction value:
->The fuel injection of the cylinder
is less than that of other cylinder.
*The negative correction value:
->The fuel injection of the cylinder
is more than that of other cylinder.
*Extreme correction value identifies a
problematic injector.
After replacing a injector with newone
,retest & confirm the engine condition
PREV