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Abstract

Security research and training using cyber-physical sys-
tems (e.g., automotive networks) is challenging because
of the need to replicate the interactions between the hard-
ware components and the control software of the sys-
tems. These interactions are challenging to replicate due
to dynamic inputs in real-world environments that cause
various interactions of hardware components and control
software within the network. In particular, automotive
networks are challenging for security research and train-
ing because although the protocols of the automotive net-
works are standardized (e.g., CAN, LIN), the implemen-
tation details by each automotive manufacturer are not
standardized and are generally not publicly available.

In this paper, we present OCTANE, which reduces the
barrier of entry into the security research and training of
automotive networks by providing a software package
and a hardware framework for the reverse engineering
and testing of automotive networks. OCTANE provides
a platform for security research and training by replicat-
ing the interactions between the hardware components
and control software of the systems so that the user can
focus on the security aspects of the automotive network
instead of the tool configuration and setup. In addition,
OCTANE includes security focused features, such as the
ability to replay and fuzz test different automotive net-
work protocols. OCTANE will be released as an open
source tool, which will enable the automotive security
community to extend this tool to support future automo-
tive protocols.

1 Introduction
Modern automobiles are pervasively controlled by net-

worked computers and recent studies have demonstrated
that these system are vulnerable to attackers with access
to internal automotive networks [28, 33] and remote ex-
ternal attackers [17]. Automotive cyber-physical secu-
rity research is challenging because of steep barriers to
entry due to the fact that there is no open source automo-
tive testbed. In particular, automobile network research
presents additional challenges due to the lack of docu-
mentation of manufacture specific proprietary protocols
built on top of standardized protocols utilized by auto-
motive manufacturers. This forces every research group
to build their automotive testbed software from scratch

and often times enter into restrictive agreements with au-
tomotive manufactures to obtain access to the documen-
tation necessary to build such a testbed, thus preventing
the release of their testbed software.

We presented our initial design and implementation of
OCTANE [20], which is an automotive security testbed
that will facilitate the analysis, understanding, and test-
ing of automotive cyber-physical systems. OCTANE en-
ables researchers and students to rapidly begin to explore
automotive cyber-physical systems by providing a plat-
form for reverse-engineering and testing through real-
world experimentation of a lab network setup or an auto-
mobile.

This paper is both an update on more advanced func-
tionality that has been integrated into OCTANE and
an introduction of OCTANE to the automotive indus-
try community. OCTANE is composed of both a soft-
ware package and hardware framework. The software
package enables monitoring and transmitting of CAN [5]
messages that can be used to perform general purpose
network diagnostic and debugging functionality and in-
cludes many features to facilitate reverse engineering of
proprietary protocols. In addition, OCTANE has the abil-
ity to perform automated security “fuzz” testing and re-
play testing of Electronic Control Units (ECU). Also,
OCTANE will be released under an open source license
and is designed to be modular and easily extended. This
gives it a distinct advantage over closed sourced solu-
tions, such as Intrepid’s vehicle spy software that is not
focused on security analysis. The free and open nature of
OCTANE reduces the burden on those interested in ex-
ploring automotive cyber-physical security by allowing
the them to concentrate on security research and not the
minutiae of setting up an automotive testbed.

2 Background
Previously, in order to provide automotive security, we

should have just used mechanical locks or car alarms
but nowadays, the advent of on-board computers has
changed the problem statement fully. Automotive net-
works are getting more complex with the ever grow-
ing number of electronic control units (ECUs) and sub-
networks that are used to connect the ECUs [31,41,42].
The automotive networks usually include a controller
area network (CAN) sub-network [5], a FlexRay sub-
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Figure 1: Exemplary automotive network.

network [7], a local interconnect network (LIN) sub-
network [11], and a media oriented systems transport
(MOST) sub-network [34]. Each sub-network has their
own technical details such as bus speed that can be ben-
eficial in different scenarios requiring fast multimedia
transfer or low cost.

The CAN sub-network is the backbone of the au-
tomotive network that communicate between the other
sub-networks. The CAN sub-network is a resilient net-
work that is able to operate even if one or more of the
ECUs are defective or with the increased electromag-
netic noise in an automotive environment. The CAN
sub-network also provides an interface for the standard-
ized on-board diagnostic (OBD) port citeOBD-standard,
which enables emissions testing and hardware testing.
The FlexRay sub-network is used for safety critical auto-
motive applications (e.g. stability control, back-up de-
tector)and high-speed application. Although FlexRay
hardware costs more comparing to CAN hardware, how-
ever, it provides higher bandwidth and fault tolerance and
redundancy and a combination of fixed, time-triggered
transmit windows and dynamic transmit windows for
important messages. The LIN sub-network is for low-
bandwidth, low-speed automotive applications(e.g.,door
lock/unlock, side mirror controls). LIN was developed
to replace CAN in these application for cost reduc-
tion purposes. The MOST sub-network is for high-
speed, high-bandwidth multimedia automotive applica-
tions (e.g., video camera, video streaming). Generally,
the cost for the hardware components and the complex-
ity of the corresponding protocol also corresponds to the
bandwidth. In other words, each sub-network has par-
ticular advantages and dis-advantages and can be uti-
lized by automotive manufacturers to decrease the over-
all manufacturing cost while providing the best network
performance.

Each sub-network has an industry accepted stan-
dard [5, 7, 11, 34]. On top of these standards, each au-
tomotive manufacturer has an application layer that ex-
tends the standard network protocol and implements the
standard network protocol in different ways (e.g., GM-
LAN [22]). Automotive manufacturers generally keep
their particular implementations as trade secrets as set
forth in the AUTOSAR working principle of “Cooperate
on standards, compete on implementation” [3]. There-
fore, these proprietary application layers are generally
not publicly available. The proprietary application lay-
ers developed by the automotive manufacturers provide
a wealth of knowledge about the network implementa-
tion but it should be reverse engineered in order to be
able to use it. 1.

Not only automotive networks is used for safety and
control of the vehicles but also, it enables automobile
maintenance through the OBD port and telematics con-
trol unit (e.g., cellular network updates [19]). The main-
tenance can be as simple as reading the error codes of an
ECU through the OBD port using a testing tool [12] or
as complicated as re-programming an ECU 2. Automo-
bile maintenance through the OBD port and telematics
control unit is important for the industry to reduce main-
tenance cost of automobiles.

3 Related Work
In the automotive security field, a few software pack-

ages [26, 28, 33, 35], lab network setups [24, 26, 28, 38]
and real-world test setups [17, 28, 33, 38] have been uti-
lized by prior researchers. These testbeds were limited
to the specific security testing technique that was being
evaluated and based on the publicly available informa-
tion on these testbeds, these testbeds were not designed
for easy setup and use by other users through a graphical
user interface. OCTANE is designed to enable users to
quickly move from a basic understanding of automotive
networks [36] to testing security solutions on automotive
networks 3.

The prior work provides an overview of the security
issues within automobile networks [24, 26–28, 33, 37]

1Each of these proprietary application layers includes: (i) ECU ac-
cess control protocols; (ii) ECU re-programming application program
interfaces (APIs); (iii) ECU memory access APIs; (iv) diagnostic APIs;
(v) ECU parameter modification APIs; and (vi) network control APIs.

2The re-programming of ECUs can be done using automotive man-
ufacturer approved tools [1] or through third party tools (e.g., PCLink
[13], TunerPro [15]). The re-programming can range from fine-tuning
control parameters (e.g., higher engine idle RPMs) to an updated ver-
sion of the control software (e.g., new version to fix braking issues).

3OCTANE is not currently designed for autonomously operated au-
tomobiles or vehicle-to-vehicle communication and as such, the exten-
sive prior work in these fields are not discussed in section 3.
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and proposed solutions to the security issues [26, 40].
The proposed solutions include honeypots [29, 39], fire-
walls [41], intrusion detection systems [25, 26, 29], en-
crypted communication [23, 32, 38, 41, 42], ECU au-
thentication [41, 42], and secure communication tech-
niques [16, 30]. Kleberger et al. [27] provide a com-
prehensive overview of the security research in the auto-
motive security field and possible security solutions for
automobiles. However, only a few of these overviews
implemented security solutions for the security issues on
lab network setups or real-world test setups [26]. OC-
TANE is designed to enable users to configure and test
the proposed solutions to the security issues described in
the prior work.

4 Testbed
Open Car Testbed And Network Experiments (OC-

TANE) consists of a Software package and a hardware
platform that can be used for testing and reverse en-
gineering of automotive networks. OCTANE moni-
tor packets and enables reverse engineering by provid-
ing a packet monitor with customized packet identifica-
tion (e.g., identify door lock packet, identify ECU re-
programming request packet) and a customized packet
transmitter that enables us to verify or understand the
packet functionalities by injecting the monitored packets
to the network (e.g., the ECU re-programming request
packet actually initiates the ECU re-programming pro-
cess, the identified lights-on packet actually turns on the
lights). Decoding of the monitored packets enables a re-
searcher to quickly reverse engineer the proprietary pro-
tocols utilized by automotive networks. This operation is
made even easier by the ability of naming the packets and
recording the names in an XML document. The identify
packet feature not only lets the researcher immediately
see all the identified packets in the packet monitor but
also allows other researchers to use the findings by dis-
tributing the XML files.

OCTANE paves the way for automatic network test-
ing and security solution testing on a network. For ex-
ample, a firewall could be configured to stop ECU re-
programming from an unauthorized device such as non-
tire pressure sensor packets from entering through the
tire pressure controller. OCTANE provides the ability
for a researcher to (i) monitor a CAN bus through an
automobile’s OBD port, (ii) replay parts of the moni-
tored traffic, and (iii) monitor the CAN bus to deter-
mine how the automobile handles the replayed traffic.
In this example, the replayed traffic could be changing
a gas gauge command that the researcher is attempting
to replicate. In another example, the researcher could

Figure 2: Architecture of software package. The architecture
is designed to enable the software package to use diverse hard-
ware interfaces by adding the application programming inter-
face to the hardware middle layer without re-coding of the GUI
layer or the thread layer.

send a sequence of messages in order to accomplish the
task, which can be similar to a series of challenge re-
sponse messages. The replayed traffic could be a ECU
reprogramming command that the researcher is attempt-
ing to replicate to reprogram an ECU. In each example,
after the researcher verifies that the replayed traffic cor-
rectly controls the respective part of the automobile, the
researcher can save the replayed traffic in an XML file
for future replay or sharing with other researchers. The
software and the hardware of OCTANE are discussed be-
low in turn.

4.1 Software
The architecture of the software package is depicted in

Figure 2. The architecture includes a presentation layer
(also referred to as GUI layer), a business logic layer that
includes both processing layer, a thread layer, a hardware
middle layer, and a hardware layer. The layered nature of
the software package enables flexibility and adaptability
in the types and quantities of network data being pro-
cessed. First the software layers are explained briefly.
Following the brief description of each layer, different
components of the software package are discussed.

The presentation layer provides the GUIs for the soft-
ware package. Screenshots of some of the GUIs are pro-
vided herein (i.e., Figures 3 and 5).

Additional GUIs can be quickly added to the software
package for new features (e.g., ECU re-programming).
The GUI layer has a direct connection to the business
logic layer that incorporates the processing layer and the
thread layer. The processing layer handles data manipu-
lation for the software package (e.g., converts user input
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into CAN message format), logging of messages, and ac-
cess to XML files for the XML automation described in
section 4.1.3. The separation of the business logic layer
and the presentation layer is done in order to off-load the
data processing that would be beneficial considering the
significant number of packets that are received from the
car.

The thread layer provides threading mechanisms for
the receiving and transmitting of data (e.g., CAN packet,
LIN packet) through the appropriate hardware (e.g.,
Kvaser CAN adapter, Kvaser LIN adapter). The thread
layer removes the delay in receiving and transmitting
data from the GUI layer so that the GUIs are not stalled
during the receiving and transmission process. The
thread layer calls the receive and transmit interfaces of
the appropriate hardware interfaces in the hardware mid-
dle layer (e.g., generic CAN interface, generic LIN inter-
face).

The hardware middle layer is utilized to obscure and
separate the implementation details of the actual hard-
ware from the other layers of the software package.
For example, a new hardware adapter (e.g., new CAN
adapter) can be added to the software package by adding
in the application programming interface (API) for the
new hardware adapter in the hardware middle layer with-
out having to re-code any part of the presentation layer,
thread layer, or business logic layer. The hardware mid-
dle layer utilizes the appropriate hardware API in the
hardware layer. The hardware layer is the API that the
hardware device manufacturer provided or is coded for
the particular hardware device (e.g., the CAN-AVR inter-
face connects through a standard serial connection). The
various layers work together to streamline the operation
of the software package while allowing for extensions to
the architecture.

4.1.1 Adapters
The advanced bus control interface of software pack-

age (not shown) controls the operation of the automo-
tive network adapters (i.e., CAN [4, 6, 10], LIN [9],
FlexRay [8]). The software package utilizes a variety
of different hardware controllers. Moreover, other hard-
ware controllers can quickly be added to the architecture
as described above in section 4.1. The bus control in-
terface enables a user to choose and configure the op-
tions of the various hardware controller 4. The guided
bus control, which is loaded by default, determines if any
of the Kvaser, Intrepid or Ecom cables are connected to

4The configuration options include bit rate parameter, time between
bits parameter, synchronization parameter, and other parameters asso-
ciated with the various hardware controllers.

Figure 3: Screenshot of the bus monitor interface of the soft-
ware package. The bus monitor interface outputs the received
packets and allows for transmission of packets back to a net-
work.

<Packet>
<Name> Stop Network com-

munications
<\Name>

<ID> 210 <\ID>

<DLC> 2 <\DLC>
<Message> 104A <\Message>
<\Packet>

Table 1: XML example of an imaginary packet for transmission
and identification.

the computer and recommends sensible default config-
uration parameters along with the option for more ad-
vanced configuration of the adapters. If no hardware
adapters are detected OCTANE implements a virtual in-
terface that can be used for simulations.

4.1.2 Monitor
Figure 3 illustrates bus monitor interface in the soft-

ware package. The bus monitor interface outputs the
received packets and allows for transmission of pack-
ets back to a network. The bus monitor displays the re-
ceived packets from the selected Receive Interface. As
illustrated in figure 3, the bus monitor enables a user
to quickly and efficiently view the received packets in
a human-readable form (i.e., English text readable form
versus hexadecimal form) and identify packets upon re-
verse engineering of the proprietary application layer
(e.g., Honda application layer can be defined as a Car-
Type in the XML file). The combined efforts of a com-
munity of users, via the sharing of a XML file, could
significantly reduce the time required to reverse engineer
a proprietary application layer.

Filters. There are two types of filtering that is available
in bus monitor. The first type of filtering is called Re-
ceive Filter that enables the highlighting and filtering of
the packets based on the selected ID, Message or other
properties. This feature helps in narrowing the scope
of packets that may be beneficial in reverse engineering
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compared to the high volume of packets that are received
from the car. The second type of filtering is the XML
filter that help in identifying the known packets. The
known packets are the packets that has already been iden-
tified and saved in the XML document. The filters are
available using the XML file as illustrated in figure 2 and
a user can select a particular car type (e.g., automobile
brand, automobile make, automobile year and model).
The XML file is shareable among users to facilitate com-
munity reverse engineering of the proprietary application
layers for automotive manufacturers. The filter selection
of a particular car type enables received packets to be
identified in figure 3. Figure 3 illustrates an XML filter
identification of a Stop Network Communications packet
(the XML for the packet is depicted in table 1) and other
packet and ECU identifications. As illustrated in figure 3,
those specific packets are highlighted using the receive
filter as described above.

Bit Priority Filter. Figure 3 also illustrates the pack-
age’s bit priority filter. The bit priority filter can be uti-
lized to view the quality of service (QoS) indicators for
CAN networks. The quality of service for CAN networks
is based on message priority so a packet with the high-
est priority identifier (also referred to as ECU identifi-
cation although CAN does not require the identification
to identify the transmitter or the receiver) obtains net-
work access [18]. For CAN networks, the lowest identi-
fier has the highest priority identifier and obtains network
access. However, the CAN standard [5] does not allow
for all zeros in the identifier (note that zeros are domi-
nant in CAN), so the identifier would not be all zeros.
To this end, ECUs on a CAN network utilize the most
significant bits and the least significant bits to differenti-
ate quality of service indicators. Also, some proprietary
network application layers increase the least significant
bit by one for responses to requests (e.g., request iden-
tification is 630 and response identification is 631). For
these networks, the bit priority filter enables users to as-
sociate requests and responses together through the most
significant bit field. The bit priority filter enables a user
to change the number of bits in the Settings tab. Thus, the
bit priority filter provides a user with the tools to reverse
engineer proprietary network application layers through
the identification and analysis of quality of service indi-
cators in packets and the request and response sequence
of packets.

Tester Present. The right corner of the Bus Monitor in-
terface includes a tester present button. When activated,
the tester present button works as a heart beat of the di-
agnostic tool. Since some services keep the controller in
a diagnostic state, we have to do the same and send the

<Packet >
<Name> Gas Gauge <\Name>
<ID> 07C0 <\ID>

<DLC> 8 <\DLC>
<Message> 04300300[2/Gas]000000 <\Message>
<\Packet >

Table 2: XML example of a dynamic packet for Gas Gauge.
The dynamic part ([2/Gas]) can be replaced by any value.

tester present every 1 or 2.5 seconds so that the ECUs
listen to OBD commands.

Transmit Selected/Fuzzed Packets. Moreover as you
can see in Figure 3, the bus monitor also enables the
transmission of any of the received packets via the Trans-
mit Selected Packet button to a selected automotive net-
work selected by the Transmit Interface. The Transmit
Selected Packet button functionality enables the user to
select a plurality of received packets for transmission to
the selected automotive network. The bus monitor en-
ables sending fuzzed packets (i.e., changing some part
of the packets) using Transmit Fuzzed Packets over the
network. This is useful in the sense that we can see the
result of changing some values that would be beneficial
in reverse engineering of some dynamic packets such as
gas gauge and engine RPM. The transmission aspects of
the bus monitor enable a user to test interactions with the
automotive network (e.g., transmit suspected door un-
lock packets to the automotive network) and test security
features of the network (e.g., transmit seed responses to
the automotive network in response to a seed request for
ECU re-programming). The bus monitor includes other
functionality (e.g., copy to clipboard, log to file) that is
not described herein due to space limitations.

Packet Response. One of the other features that facil-
itates reverse engineering of the vehicle is the IFTHEN
feature (refer to table 4) that is included in the bus moni-
tor GUI. The IFTHEN feature provides for the challenge
response features described in some automobile proto-
cols. This is helpful in situations such as unlocking the
controller. In some protocols, in order to unlock the con-
troller, a seed must be requested, a key is generated using
the seed in conjunction with a proprietary algorithm, and
the key is sent to the controller. If the controller gets the
same result as the key that was sent, it will send a positive
response showing that it is unlocked.

4.1.3 XML Automation
The packages’s XML editing interface as shown in

Figure 4 enables a user to efficiently add, delete, or mod-
ify a car or car type in the XML file. The XML editing
interface also enables a user to efficiently add, delete,
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<Sequence>
<Name> Request Seed from

ECUs
<\Name>

<Packet>
<Number> 1 <\Number>
<Name> Standard Hello1 <\Name>
<ID> 622 <\ID>

<DLC> 2 <\DLC>
<Message> 104A <\Message>
<\Packet >
<Packet>
<Number> 2 <\Number>
<Name> Standard Hello2 <\Name>
<ID> 623 <\ID>

<DLC> 2 <\DLC>
<Message> 1F4A <\Message>
<\Packet >
<\Sequence>

Table 3: XML example of a sequence of packets for Request
Seed from ECUs for instance (Data values are not real). The
sequence of packets is for different packets to be transmitted
and identified by the software package.

<IFTHEN>

<Name> Challenge and Re-
sponse to Seed Calcu-
lation

<\Name>

<IF>
<Packet>
<Name> Standard Hello1 <\Name>
<ID> 104A <\ID>

<DLC> 2 <\DLC>
<Message > 1010 <\Message>
<\Packet >
<\IF >

<THEN >

<Packet>
<Name> Standard Hello2 <\Name>
<ID> 623 <\ID>

<DLC> 2 <\DLC>
<Message > 1F4A <\Message>
<\Packet >
<\THEN >

<\IFTHEN>

Table 4: XML example of a packet response for transmission
upon identification of a specified packet or packets. The packet
response enables one or more packets to be transmitted in re-
sponse to the identification of a packet or packets.

Figure 4: Screenshot of the XML edit interface for different fil-
ters and XML edit for packets. The XML edit interface enables
the editing of a car or car type and the editing of packets for a
car or car type.

or modify packets for the selected car type. The XML
editing interface enables users to quickly and efficiently
modify the XML file without having to learn the XML
format (see, e.g., table 1) and to share the XML informa-
tion with other users to facilitate reverse engineering of
the proprietary application layer.

The XML automation provides the following XML
extensions:

• Dynamic Packets (e.g., ID = [GAS/2]; Message =
AE[7/VIN]); as illustrated in table 2;

• Packet Sequences (e.g., packet A followed by
packet B); as illustrated in table 3;

• Packet responses (e.g., response with packet D upon
receipt of packet C); as illustrated in table 4; and

• Packet Subroutines with sequences and responses
(e.g., packets A and B and then response with
packet D upon receipt of packet C).

These extensions provide the user with additional tools
for the reverse engineering and testing of automotive net-
works. The extensions enable users to encode and share
specific interactions of a proprietary application layer.

4.1.4 Custom Transmit
Figure 5 illustrates the custom transmit interface. The

custom transmit interface lists available filters, such as
a particular car or car type, and then the packets associ-
ated with the selected car or car type that are available
for transmission. The filters and packets are stored in the
XML file as illustrated in figure 2 for efficient editing
and sharing. Table 1 illustrates XML schema of a packet
for transmission using the custom transmit interface. The
custom transmit interface enables the transmission of one
or more of the selected packets on the selected Transmit
Interface. Although the screenshot depicts CAN mes-
sages in the figure 5, any of the other network protocols
(e.g., LIN, FlexRay) can be utilized by the custom trans-
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Figure 5: Screenshot of the custom transmit interface of the
software package. The custom transmit interface facilitate the
selection of a packet from the database of known packets in a
particular car or car type and transmission of packets associated
with the selected car or car type.

mission interface. The custom transmit interface enables
a user to build transmission sequences for reverse engi-
neering (e.g., how does the network respond to a certain
packet?) and security testing (e.g., does the ECU let me
control the engine with a certain packet?). The use of the
XML file in the custom transmit interface also reduces
reverse engineering and testing time by reducing man-
ual typing of packets, configuration time (e.g., a user can
load shared XML files from fellow researchers for test-
ing), and sharing by fellow users.

4.1.5 Transmit
The software package’s transmit interface (not shown)

enables transmission of one or more packets. The trans-
mit interface enables a user to specify a CAN packet for
transmission to the selected Transmit Interface. The var-
ious features of the transmit interface (e.g., flags, num-
ber of messages, incremented identifiers for a plurality
of packets) enable a user to test responses from an au-
tomobile network to various packets (e.g., how does the
network respond to fuzzed packets?; how does the net-
work respond to the same CAN message with a range of
CAN identifiers?). The transmit interface decreases the
user time in the setup and configuration of sending pack-
ets to the automotive network, thereby enabling the user
to focus on reverse engineering and testing.

4.2 Hardware
The hardware framework for the testbed includes a lab

network setup for testing of particular parts of an auto-
mobile network (e.g., window setting, door lock/unlock)
and a description of how to setup tests for real-world
automobiles. The lab network setup enables users to
reverse engineer and test the security for isolated parts
of an automobile network in a controlled environment
(e.g., undergrad class project of capture the flag for door
lock/unlock, research initial testing of firewall imple-
mentation on tire pressure control, re-programming of

Figure 6: Exemplary automotive network for a lab network
setup. A graduate student can utilize the automotive network
to configure proposed security solutions for testing.

ECU). The real-world test setup enables users to extend
the reverse engineering and security testing from the lab
network setup to determine how the a complete automo-
tive network operates and responds to different packets
(e.g., an attempt to perform a denial of service on the
CAN network using the software package was not suc-
cessful in a real-work test because the CAN adapter was
not able to saturate the network via the OBD port). For
the lab network setup and the real-world test setup, we
provide the process of setting up each setup instead of a
list of actual parts so that the user can choose the optimal
setup from a cost (e.g., undergraduate laboratory versus a
research laboratory) and automotive network perspective
(e.g., a single CAN network versus three different net-
works). Overall, the combination of both the lab network
setup and the real-world test setup provides the founda-
tion for users to reverse engineer and test security solu-
tions on automobile networks.

4.2.1 Lab Network Setup
Figure 6 illustrates an exemplary lab network setup for

users to test automotive networks. The process for set-
ting up the lab network includes the following steps:

(a) Determine Research Types that the lab network
should facilitate (e.g., undergraduate laboratory, se-
curity testing);

(b) Determine Automotive Networks Types that need to
be researched (e.g., CAN, LIN);

(c) Identify Automobile Types that include the automo-
tive network types (e.g., BMW, Honda);

(d) Identify Adapters that include the automotive net-
work types (e.g., Kvaser, AVR-CAN);

(e) Determine Budget for lab network; and
(f) Match Automotive Parts to meet the research types,

the automotive network types, the automobile types,
the adapters, and the budget.

We selected parts for a 2011 BMW X5. The selection
was based on the following decision process: (a) fa-
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cilitate an undergraduate laboratory, graduate research,
and security testing; (b) include a CAN sub-network, a
FlexRay sub-network, and a LIN sub-network; (c) cer-
tain BMW models included the three automotive net-
work types (e.g., research through web searches [21] and
review of electronic wiring diagrams); (d) Kvaser sup-
ported CAN [10] and LIN [9] network types and Intrepid
Control Systems supported FlexRay network type [8];
and (e) budget was large enough to support a large net-
work. Figure 6 illustrates part of the lab network that we
assembled 5. The computer in figure 6 is connected to
the Kvaser CAN adapter, which is connected to the OBD
port and to the CAN network through the OBD port, and
the Kvaser LIN adapter, which can be connected to the
LIN network.

4.2.2 Real-World Test Setup
Figure 1 illustrates part of an exemplary real-world

network. The user can utilize a computer with a CAN
adapter to access the CAN network via the OBD port.
The process for selecting an automobile for real-world
tests includes the following steps (similar to the process
for a lab network):

(a) Determine Automotive Networks Types that need to
be researched (e.g., CAN, LIN);

(b) Identify Automobile Types that include the automo-
tive network types (e.g., BMW, Honda);

(c) Identify Adapters that include the automotive net-
work types (e.g., Kvaser, AVR-CAN);

(d) Determine Access to different automobile types;
and

(e) Match Automobiles to meet the automotive network
types, the automobile types, the adapters, and the
access.

We utilized the software package to test five real-world
automobiles. We tested the following automobiles: (i)
2013 Chevrolet Cruze; (ii) 2012 Chevrolet Cruze; (iii)
2011 Chevrolet HHR; (iv) 2010 Toyota Matrix; and (v)
2006 Toyota Corolla. For each automobile, we obtained
the electrical wiring diagrams [2, 14]. We utilized the
OBD port to interface with the internal automobile net-
work and utilized the electrical wiring diagram to deter-
mine which ECUs are visible via the OBD port.

5 Research and Training Opportunities
OCTANE can be utilized for research opportunities

and training opportunities. Each of these opportunities
are discussed below in turn.

5Figure 6 does not show the FlexRay sub-network for the dynamic
stability control

Figure 7: Exemplary firewalls and intrusion detection system
on an automotive network. The firewalls are positioned at every
entry point on the automotive network. The intrusion detection
system is positioned on the core CAN network.

5.1 Research Opportunities
With regard to research opportunities, figure 7 de-

picts a model automotive network with model security
devices. The security devices are meant to be used as se-
curity solutions for the automotive networks to prevent
and stop unauthorized access to the automotive network
(e.g., encryption techniques, authentication device).

Below are some of the security solutions that can be
tested using the testbed:

• Firewall to prevent transmission of unauthorized
packets into an automotive network [41];

• Intrusion Detection System to detect anomalies on
an automotive network [25, 26, 29];

• Packet Encryption to protect the data on an auto-
motive network from easy sniffing and packet in-
sertion, besides, it will prevent side channel at-
tacks [23, 32, 38, 41, 42];

• ECU Authentication to prevent unauthorized ECUs
(e.g., ECU inserted by a malicious actor) from in-
teracting with an automotive network [41, 42]; and

• ECM Security to detect tampering of ECUs along
with authentication tampering [30].

For training opportunities, figure 6 illustrates an ex-
emplary automotive network for laboratory experiments
and testing of proposed security solutions. There are also
many training uses of the lab network that are not related
to automobile security testing (e.g., embedded operating
system exercises, networking laboratory exercises). The
following are some of the training uses of the testbed re-
lated to automobile security testing:

• Automotive Network Laboratory Security Exercise
to sniff network activity and attempt to take-over the
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network (e.g., control the side mirror, lock/unlock
the doors);

• Automotive Laboratory Embedded Programming
Exercise to program an AVR-CAN controller to re-
ceive and transmit packets on a CAN network [4];
and

• Automotive Security Testing Exercise to implement
an intrusion detection system on an AVR-CAN con-
troller for a CAN network [4].

6 Learning Points
During the development of OCTANE we encountered

some pitfalls that automotive security researchers should
know and take into consideration.

• Finding Application Layer information for a par-
ticular automobile manufacturer is challenging as
described in section 2. Since automobile manufac-
turers usually preserve their particular implementa-
tions as trade secrets as described in the AUTOSAR
working principle of ”Cooperate on standards, com-
pete on implementation” [3]. Therefore, in order to
gain access to network implementation information,
we had to reversed engineer these implementation,
which is time-consuming and susceptible to errors.

• Finding Automotive Parts is hard without having an
actual vehicle. Repair facilities generally have the
actual vehicle for repair and can obtain automotive
parts due to the exact configuration of that vehicle.
The other problem that we faced is that some of the
parts require a VIN number in order to work prop-
erly and this makes the research even harder without
support from the industry.

• Electrical Diagrams are necessary in order to iden-
tify the ECUs that can be accessed via the OBD port
for testing of different vehicles 6.

7 Future Work and Conclusion
Building on our work on the software package, the

next steps will be several extensions as well as security
implementations for testing in automotive networks. The
detailed extensions are explained below:

• Monitoring of Actuator Inputs. This would enable
fully automated fuzz testing by being able to trans-
mit a CAN message and monitor which actuators
are triggered.

• Wireless. Cars are becoming increasingly wire-

6In some automobiles, all of the ECUs are reachable from the OBD
port (i.e., on the primary CAN network) however on other automobiles,
the sub-systems (e.g. window controls, door lock) are in a sub-network
such as a secondary sub-network or LIN sub-network which cannot be
accessed from the OBD port. These subnetworks can be accessed via
direct tapping into the sub-network as described in section 4.2.2

lessly connected. Thus, it is important for OCTANE
to be able to monitor and test the wireless compo-
nents integrated into cars.

• Improve Dynamic Packets and Sequence of Packets.
This will enable the user to transmit dynamic pack-
ets and automatically identify potential instances of
dynamic packets and sequence of packets.

Regarding the security aspects of the project, our fu-
ture plans include:

• Firewalls for Incoming Traffic. This would help to
stop unexpected incoming traffic from accessing an
automotive network as described in section 5.1; and

• ECM Security. This would prevent unauthorized
re-programming and access by unapproved devices
and persons as described in section 5.1.

• Car2X Security. This would enable OCTANE to
monitor and test the car2X networks, which will
enable increased understanding vulnerabilities and
improve their security.

OCTANE provides a foundation for cyber-physical se-
curity research in the automotive space. There are many
challenges during the entry into this research field and
the testbed is designed to reduce the challenges and ease
the entry. OCTANE eases the entry by providing the soft-
ware tools to analyze automotive networks and a hard-
ware framework for setting up the physical components
of the automotive networks. Overall, OCTANE is de-
signed to allow users to learn about automotive networks
through the available resources [36] and then proceed to
the design and implementation of security solutions for
the automotive networks through the implementation of
proposed security solutions [27, 32] or newly developed
security solutions.

In this paper we present OCTANE, which is an intu-
itive and flexible software and hardware based testbed
that reduces the barrier to entry for both researching au-
tomotive security and teaching courses on this topic. Our
software tools incorporate easy to use GUI’s that allow
for monitoring and transmitting of messages on many of
the standardized automotive networking protocols along
with a portable XML scheme for defining and sharing
proprietary parts of the application layer APIs and pro-
tocols that require time consuming reverse-engineering
efforts. It is our hope that OCTANE will be useful for
implementing and evaluating existing theoretical auto-
motive network solutions in a standardized environment
and provide the industry, research and teaching commu-
nities with an open source software platform and hard-
ware setup guidelines to enable sharing of information.
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